ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 11: The Generalized Likelihood Ratio

The generalized likelihood ratio test is a general procedure for composite testing problems. The basic idea is to compare the best model in class H_1 to the best in H_0 , which is formalized as follows. We have two composite hypotheses of the form:

$$H_i : X \sim p_i(x|\theta_i), \ \theta_i \in \Theta_i, i = 0, 1.$$

The parametric densities p_0 and p_1 need not have the same form. The GLRT based on an observation x of X is

$$\widehat{\Lambda}(x) = \frac{\max_{\theta_1 \in \Theta_1} p_1(x|\theta_1)}{\max_{\theta_0 \in \Theta_0} p_0(x|\theta_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \gamma,$$

or equivalently

$$\log \widehat{\Lambda}(x) \underset{H_0}{\overset{H_1}{\gtrless}} \gamma$$
.

1 Example - Signal Detection

Consider two hypotheses

$$H_0$$
: $X \sim \mathcal{N}(0, \sigma^2 I_n)$
 H_1 : $X \sim \mathcal{N}(H\theta, \sigma^2 I_n)$

where $\sigma^2 > 0$ is known, H is a known $n \times k$ matrix, and $\theta \in \mathbb{R}^k$ is unknown. The mean vector $H\theta$ is a model for a signal that lies in the k-dimensional subspace spanned by the columns of H (e.g., a narrowband subspace, polynomial subspace, etc.). In other words, the signal has the representation

$$s = \sum_{i=1}^{k} \theta_i h_i \ , \ H = [h_1, \cdots, h_k] \ .$$

The null hypothesis is that no signal is present (noise only).

Log LR

$$\log \Lambda(x) = -\frac{1}{2\sigma^2} (x - H\theta)^T (x - H\theta) + \frac{1}{2\sigma^2} x^T x$$
$$= \frac{1}{\sigma^2} (\theta^T H^T x - \frac{1}{2} \theta^T H^T H\theta) .$$

Since θ is unknown we can't go further, instead we find θ that makes x most likely:

$$\hat{\theta} = \arg \max_{\theta} p(x|H_1, \theta)$$

$$= \arg \max_{\theta} \frac{1}{(2\pi\sigma^2)^{\frac{k}{2}}} e^{-\frac{1}{2\sigma^2}(x-H\theta)^T(x-H\theta)}$$

$$= \arg \max_{\theta} -\frac{1}{2\sigma^2}(x-H\theta)^T(x-H\theta)$$

$$= \arg \min_{\theta} (x-H\theta)^T(x-H\theta)$$

$$= \arg \min_{\theta} (x^Tx - \theta^TH^Tx + \theta^TH^TH\theta)$$

Taking the derivative with respect to θ

$$\frac{\partial}{\partial \theta} (x^T x - \theta^T H^T x + \theta^T H^T H \theta) = 0$$

$$\Rightarrow 0 - 2H^T x + 2H^T H \theta = 0$$

$$\Rightarrow \hat{\theta} = (H^T H)^{-1} H^T x$$

Now we plug $\hat{\theta}$ into the GLRT: $\theta \to \hat{\theta}$

$$\log \hat{\Lambda}(x) := \frac{1}{\sigma^2} (x^T H (H^T H)^{-1} H^T x - \frac{1}{2} x^T H (H^T H)^{-1} H^T H (H^T H)^{-1} H^T x)$$
$$= \frac{1}{2\sigma^2} x^T H (H^T H)^{-1} H^T x$$

Recall that the projection matrix onto the subspace is defined as $P_H := H(H^T H)^{-1} H^T$

$$\Rightarrow \frac{1}{2\sigma^2} x^T P_H x$$

$$= \frac{1}{2\sigma^2} ||P_H x||_2^2$$
(1)

Observe it is simply an energy detector in H, we are taking the projection of x into H and measuring the energy. The expected value of this energy under H_0 (noise only) is

$$\mathbb{E}_{H_0} \left[\| P_H X \|_2^2 \right] = k \, \sigma^2 \, ,$$

since a fraction k/n of the total noise energy $n\sigma^2$ falls into this subspace.

The performance of the subspace energy detector can be quantified as follows. From Equation (1) we can choose a γ for the desired P_{FA} :

$$\frac{1}{\sigma^2} x^T P_H x \underset{H_0}{\overset{H_1}{\gtrless}} \gamma$$

What is the distributions of $x^T P_H x$ under H_0 ?

 $P_H = UU^T$, where U_{nxk} with orthonormal columns spanning columns of H.

$$x^{T} P_{H} x = x^{T} U U^{T} x = y^{T} y , y_{kx1} = U^{T} x$$

$$\frac{1}{\sigma^{2}} x^{T} P_{H} x = \frac{y^{T} y}{\sigma^{2}}$$

$$y \sim \mathcal{N}(0, \sigma^{2} U^{T} U) \equiv \mathcal{N}(0, \sigma^{2} I_{kxk})$$

$$y_{i} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^{2}) , i = 1, \cdots, k$$

$$\Rightarrow \frac{y}{\sigma} \sim \mathcal{N}(0, I_{kxk})$$

 $\Rightarrow \frac{y^T y}{\sigma^2} \sim \chi_k^2$, chi-square with k-degrees of freedom

GLRT and P_{FA}

$$\frac{1}{\sigma^2} x^T P_H x \underset{H_0}{\overset{H_1}{\gtrless}} \gamma$$

$$under \ H_0, \ \frac{1}{\sigma^2} x^T P_H x \sim \chi_k^2 \ , \ i.e., \ under \ H_0: \ 2 \log \hat{\Lambda} \sim \chi_k^2$$

$$P_{FA} = \mathbb{P}(\chi_k^2 > \gamma)$$

Figure 1: The P_{FA} of a χ_k^2 distribution.

1.0.1 χ_k^2 Distributions

To calculate the tails on χ_k^2 distributions (as in Figure 1 and 2) you can look it up in the back of a good book or use Matlab (chi2cdf(x,k), chi2inv(γ ,k), chi2cdf(x,k)). Remember the mean of a χ_k^2 distribution is k, so we want to choose a γ bigger than k to produce a small P_{FA} .

2 Wilks' Theorem

Wilk's Theorem was established in 1938 [2].

Theorem 1 Consider a composite hypothesis testing problem

$$H_0$$
: $X_1, X_2, ..., X_n \stackrel{iid}{\sim} p(x|\theta_0)$,
where $\theta_{0,1}, ..., \theta_{0,\ell} \in \mathbb{R}$ are free parameters and
 $\theta_{0,\ell+1} = a_{\ell+1}, ..., \theta_k = a_k$ are fixed at the values $a_{\ell+1}, ..., a_k$
 H_1 : $X_1, X_2, ..., X_n \stackrel{iid}{\sim} p(x|\theta_1)$, $\theta_1 \in \mathbb{R}^k$ are all free parameters

and the parametric density has the same form in each hypothesis. In this case family of models in H_0 is a subset of those in H_1 , and we say that the hypotheses are nested. This is a key condition that must hold for this theorem. If the 1^{st} and 2^{nd} order derivatives of $p(x|\theta_i)$ with respect to θ_i exist and if $\mathbb{E}\left[\frac{\partial \log p(x|\theta_i)}{\partial \theta_i}\right] = 0$ (which guarantees that the MLE $\hat{\theta}_i \to \theta_i$ (true) in limit), then the generalized likelihood ratio statistic, based on an observation $X = (X_1, \dots, X_n)$,

$$\hat{\Lambda}_n(X) = \frac{\max_{\theta_1} p(x|\theta_1)}{\max_{\theta_0} p(x|\theta_0)}$$
 (2)

has the following asymptotic distribution when $X \sim p(x|\theta_0 \ (a \ model \ in \ hypothesis \ H_0)$:

$$2\log \hat{\Lambda}(x) \stackrel{n \to \infty}{\sim} \chi_{k-\ell}^2$$
i.e.
$$2\log \hat{\Lambda}(x) \stackrel{D}{\sim} \chi_{k-\ell}^2$$

Figure 2: χ^2_k distributions, for k>2 they all take on the same general form.

<u>Proof:</u> (Sketch) under the conditions of the theorem, the log GLRT tends to log GLRT in Gaussian setting (aka the Central Limit Theorem (CLT)).

2.1 Example of a Nested Condition

$$H_0: x_i \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$

$$H_1: x_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2) , i = 1, 2, \cdots, n \sigma^2 > 0 \ unknown$$

$$\sum \left(-\frac{1}{2} log_e \sigma^2 - x_i^2 \left(\frac{1}{2\sigma^2} - \frac{1}{2} \right) \right)$$

MLE of σ^2 :

log LR:

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n x_i^2$$

log GLRT:

$$2\left(\sum -\frac{1}{2}log_{e}\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}\right) - \frac{x_{i}^{2}}{2}\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - 1\right)\right) \stackrel{n \to \infty}{\sim} \chi_{1}^{2}, \ under \ H_{0}$$

2.2 Example Multiple Source Internet Tomography

Wilk's theorem does have real world application, it was used in a computer network to determine the network topology. It worked well in simulation as well as in practice [1].

References

- [1] M.G. Rabbat, M.J. Coates, and R.D. Nowak. Multiple-Source internet tomography. *Selected Areas in Communications, IEEE Journal on*, 24(12):2221–2234, 2006.
- [2] S. S. Wilks. The Large-Sample distribution of the likelihood ratio for testing composite hypotheses. *The Annals of Mathematical Statistics*, 9(1):60–62, March 1938. ArticleType: research-article / Full publication date: Mar., 1938 / Copyright 1938 Institute of Mathematical Statistics.