
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 11: The Generalized Likelihood Ratio

The generalized likelihood ratio test is a general procedure for composite testing problems. The basic idea
is to compare the best model in class H1 to the best in H0, which is formalized as follows. We have two
composite hypotheses of the form:

Hi : X ∼ pi(x|θi) , θi ∈ Θi , i = 0, 1 .

The parametric densities p0 and p1 need not have the same form. The GLRT based on an observation x of
X is

Λ̂(x) =
maxθ1∈Θ1 p1(x|θ1)
maxθ0∈Θ0 p0(x|θ0)

H1

≷
H0

γ ,

or equivalently

log Λ̂(x)
H1

≷
H0

γ .

1 Example - Signal Detection

Consider two hypotheses

H0 : X ∼ N (0, σ2In)
H1 : X ∼ N (Hθ, σ2In)

where σ2 > 0 is known, H is a known n × k matrix, and θ ∈ Rk is unknown. The mean vector Hθ is a
model for a signal that lies in the k-dimensional subspace spanned by the columns of H (e.g., a narrowband
subspace, polynomial subspace, etc.). In other words, the signal has the representation

s =
k∑
i=1

θihi , H = [h1, · · · , hk] .

The null hypothesis is that no signal is present (noise only).
Log LR

log Λ(x) = − 1
2σ2

(x−Hθ)T (x−Hθ) +
1

2σ2
xTx

=
1
σ2

(θTHTx− 1
2
θTHTHθ) .

Since θ is unknown we can’t go further, instead we find θ that makes x most likely:

θ̂ = arg max
θ

p(x|H1, θ)

= arg max
θ

1

(2πσ2)
k
2
e−

1
2σ2 (x−Hθ)T (x−Hθ)

= arg max
θ
− 1

2σ2
(x−Hθ)T (x−Hθ)

= arg min
θ

(x−Hθ)T (x−Hθ)

= arg min
θ

(xTx− θTHTx+ θTHTHθ)

1
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Taking the derivative with respect to θ

∂

∂θ
(xTx− θTHTx+ θTHTHθ) = 0

⇒ 0− 2HTx+ 2HTHθ = 0
⇒ θ̂ = (HTH)−1HTx

Now we plug θ̂ into the GLRT: θ → θ̂

log Λ̂(x) :=
1
σ2

(xTH(HTH)−1HTx− 1
2
xTH(HTH)−1HTH(HTH)−1HTx)

=
1

2σ2
xTH(HTH)−1HTx

Recall that the projection matrix onto the subspace is defined as PH := H(HTH)−1HT

⇒ 1
2σ2

xTPHx (1)

=
1

2σ2
‖PHx‖22

Observe it is simply an energy detector in H, we are taking the projection of x into H and measuring the
energy. The expected value of this energy under H0 (noise only) is

EH0

[
‖PHX‖22

]
= k σ2 ,

since a fraction k/n of the total noise energy nσ2 falls into this subspace.
The performance of the subspace energy detector can be quantified as follows. From Equation (1) we

can choose a γ for the desired PFA:
1
σ2
xTPHx

H1

≷
H0

γ

What is the distributions of xTPHx under H0?

PH = UUT , where Unxk with orthonormal columns spanning columns of H.

xTPHx = xTUUTx = yT y , ykx1 = UTx

1
σ2
xTPHx =

yT y

σ2

y ∼ N (0, σ2UTU) ≡ N (0, σ2Ikxk)

yi
iid∼ N (0, σ2) , i = 1, · · · , k

⇒ y

σ
∼ N (0, Ikxk)

⇒ yT y

σ2
∼ χ2

k , chi-square with k-degrees of freedom

GLRT and PFA
1
σ2
xTPHx

H1

≷
H0

γ

under H0,
1
σ2
xTPHx ∼ χ2

k , i.e., under H0 : 2 log Λ̂ ∼ χ2
k

PFA = P(χ2
k > γ)
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Figure 1: The PFA of a χ2
k distribution.

1.0.1 χ2
k Distributions

To calculate the tails on χ2
k distributions (as in Figure 1 and 2) you can look it up in the back of a good

book or use Matlab (chi2cdf(x,k), chi2inv(γ,k), chi2cdf(x,k)). Remember the mean of a χ2
k distribution is k,

so we want to choose a γ bigger than k to produce a small PFA.

2 Wilks’ Theorem

Wilk’s Theorem was established in 1938 [2].

Theorem 1 Consider a composite hypothesis testing problem

H0 : X1, X2, ..., Xn
iid∼ p(x|θ0) ,

where θ0,1, . . . , θ0,` ∈ R are free parameters and
θ0,`+1 = a`+1, . . . , θk = ak are fixed at the values a`+1, . . . , ak

H1 : X1, X2, ..., Xn
iid∼ p(x|θ1) , θ1 ∈ Rk are all free parameters

and the parametric density has the same form in each hypothesis. In this case family of models in H0 is a
subset of those in H1, and we say that the hypotheses are nested. This is a key condition that must hold for
this theorem. If the 1st and 2nd order derivatives of p(x|θi) with respect to θi exist and if E

[
∂ log p(x|θi)

∂θi

]
= 0

(which guarantees that the MLE θ̂i → θi (true) in limit), then the generalized likelihood ratio statistic, based
on an observation X = (X1, . . . , Xn),

Λ̂n(X) =
max
θ1

p(x|θ1)

max
θ0

p(x|θ0)
(2)

has the following asymptotic distribution when X ∼ p(x|θ0 (a model in hypothesis H0):

2 log Λ̂(x) n→∞∼ χ2
k−`

i.e. 2 log Λ̂(x) D→ χ2
k−`
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Figure 2: χ2
k distributions, for k > 2 they all take on the same general form.

Proof: (Sketch) under the conditions of the theorem, the log GLRT tends to log GLRT in Gaussian
setting (aka the Central Limit Theorem (CLT)).

2.1 Example of a Nested Condition

H0 : xi
iid∼ N (0, 1)

H1 : xi
iid∼ N (0, σ2) , i = 1, 2, · · · , n σ2 > 0 unknown

log LR: ∑(
−1

2
logeσ

2 − x2
i

(
1

2σ2
− 1

2

))
MLE of σ2:

σ̂2 =
1
n

n∑
i=1

x2
i

log GLRT:

2

(∑
−1

2
loge

(
1
n

n∑
i=1

x2
i

)
− x2

i

2

(
1
n

n∑
i=1

x2
i − 1

))
n→∞∼ χ2

1 , under H0

2.2 Example Multiple Source Internet Tomography

Wilk’s theorem does have real world application, it was used in a computer network to determine the network
topology. It worked well in simulation as well as in practice [1].
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