ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 11: The Generalized Likelihood Ratio

The generalized likelihood ratio test is a general procedure for composite testing problems. The basic idea
is to compare the best model in class H; to the best in Hy, which is formalized as follows. We have two
composite hypotheses of the form:

The parametric densities pg and p; need not have the same form. The GLRT based on an observation x of
X is

N 0 H
Aa) = maxg, co, p1(x|01) 21 5,
maxg,ce, Po(]0o) H,

or equivalently
- H
logA(z) = 7.

0

1 Example - Signal Detection

Consider two hypotheses

Hy : X ~N(0,0°1,)
H1 : XNN(HG,UQIn)
where 02 > 0 is known, H is a known n x k matrix, and # € RF is unknown. The mean vector H@ is a

model for a signal that lies in the k-dimensional subspace spanned by the columns of H (e.g., a narrowband
subspace, polynomial subspace, etc.). In other words, the signal has the representation

k
s=Y Oihi, H=[hy, - ] .
=1

The null hypothesis is that no signal is present (noise only).
Log LR
1

T (. 1 7
logA(z) = 202(3: HO) (x H0)+202x T

1 1
= —"H"z— -6"H"HY) .
o 2
Since 6 is unknown we can’t go further, instead we find 6 that makes x most likely:
0 = arg max p(z|H,0)

= arg max %e—ﬁ(x—H@T(x—Ha)
0 (2m0?)2

1 T
= arg max —ﬁ(x—HG) (x — HO)
= arg nbin (x — HO)T (x — HO)

= arg mgin (T2 —0TH 2 + 0T HT HO)
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Taking the derivative with respect to 6

%(me —0TH 2 +0"HTHO) =0
=0-2H "z +2HTHO =0

=0=H"H)"'H z
Now we plug 6 into the GLRT: § — 6
. 1 1
logA(z) := = (z"HH"H)"H"z — §xTH(HTH)‘1HTH(HTH)‘1HTx)
g

1
=-——a"HH"H)'H"z
20
Recall that the projection matrix onto the subspace is defined as Py := H(HTH) " 'HT

1

1
= @HPHW%

Observe it is simply an energy detector in H, we are taking the projection of x into H and measuring the
energy. The expected value of this energy under Hy (noise only) is

En, [|PrX|3] = ko?,

since a fraction k/n of the total noise energy no? falls into this subspace.
The performance of the subspace energy detector can be quantified as follows. From Equation (1) we

can choose a v for the desired Pp4:

1 H

—ZxTPHx 2y

9 H
0

What is the distributions of 7 Pya under Hy?

Py =UUT | where Upyi, with orthonormal columns spanning columns of H.
2l Pyr =2T0UTz = yTy s Ykl = UTx

1 7 y'y
y ~ N(0,02UTU) = N(0, 0% T1pr,)
yi%i'/\/(oﬂoj)ai:la'”ak

= g ~ N(O,Ika:k)

g

T
= % ~ X% , chi-square with k-degrees of freedom
g

GLRT and Prg

1 Hi
T

—a Pgx 2 v

o Hy

1 .
under Hy, —QxTPHx ~ Xﬁ , t.e., under Hy: 2log A ~ xi
o

Ppa=P(xi >7)
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Figure 1: The Pry4 of a x3 distribution.

1.0.1 X% Distributions

To calculate the tails on xi distributions (as in Figure 1 and 2) you can look it up in the back of a good
book or use Matlab (chi2edf(x,k), chi2inv(v,k), chi2edf(x,k)). Remember the mean of a x? distribution is k,
so we want to choose a v bigger than k to produce a small Pp 4.

2 Wilks’ Theorem

Wilk’s Theorem was established in 1938 [2].

Theorem 1 Consider a composite hypothesis testing problem

jid
Hy X17X23 7X’rL = p(.’I}|90> )
where 6y 1,...,00¢ € R are free parameters and

00,641 = Qr41,--.,0k = a are fized at the values agy1,...,ax
H @ X1, Xs,..X, “r;flp(xwl) , 0, € R¥ are all free parameters
and the parametric density has the same form in each hypothesis. In this case family of models in Hy is a
subset of those in Hi, and we say that the hypotheses are nested. This is a key condition that must hold for

: s nd : : ; ; ; Ologp(z|0:) | _
this theorem. If the 15t and 2™ order derivatives of p(x|0;) with respect to 0; exist and if E [%] =0

(which guarantees that the MLE 0; — 0; (true) in limit), then the generalized likelihood ratio statistic, based

on an observation X = (X1,...,X,),
) max p(z|61)
A (X) = [
<) max p(zfo)
0

(2)

has the following asymptotic distribution when X ~ p(z|fy (a model in hypothesis Hy):

n—oo 9

2log A(z) "7 xi_

ie. 2logA(z) 2 x2_,
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Figure 2: % distributions, for k£ > 2 they all take on the same general form.

Proof: (Sketch) under the conditions of the theorem, the log GLRT tends to log GLRT in Gaussian
setting (aka the Central Limit Theorem (CLT)).

2.1 Example of a Nested Condition

Ho:z; % N(0,1)

H, :xi%iN(O,UQ) ,i=1,2 -, no®>0unknown
Z( %logeazfzz2 (%; ;))
MLE of ¢2:
o:zzlzn:x?
i
log GLRT:

n

2 (Z—gloge (nzx?> -3 <an? - 1)) ~7 i, under Ho
=1 i=1

2.2 Example Multiple Source Internet Tomography

Wilk’s theorem does have real world application, it was used in a computer network to determine the network
topology. It worked well in simulation as well as in practice [1].
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