
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak , scribe: Inseok Heo

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Ultimately, we would like to be able to argue that a given estimator is(or is not) optimal in some sense.
Usually this is very difficult, but in certain cases it is possible to make precise statements about optimality.
MVUB estimators are one class where this is sometimes the case. First let’s quickly review some key
estimation-theoretic concepts.

1 Review of key estimation concepts

Observation model
X ∼ p(x|θ), x ∈ X , θ ∈ Θ

Loss
` : Θ×Θ→ R+

Example 1

`2 : `(θ1, θ2) = ‖θ1 − θ2‖22
`1 : `(θ1, θ2) = ‖θ1 − θ2‖1

log-likelihood : `(θ1, θ2) = − log p(x|θ2), where x ∼ p(x|θ1)

Risk : expected loss of estimator θ̂(x)

R(θ∗, θ̂) = E[`(θ∗, θ̂)]

MSE : the `2 risk is usually called the mean square error :

MSE(θ̂) = E[‖θ∗ − θ̂‖22]

Recall that the MSE can be decomposed into the bias and variance

MSE(θ̂) = E[‖θ∗ − θ̂‖22]

= E[‖θ∗ − Eθ̂ + Eθ̂ − θ̂‖22]

= ‖θ∗ − Eθ̂‖22 + 2E[(θ∗ − Eθ̂)T (Eθ̂ − θ̂)] + E[‖Eθ̂ − θ̂‖22]

= ‖θ∗ − Eθ̂‖22 + E[‖θ̂ − Eθ̂‖22]

= bias2(θ̂) + var(θ̂)

It is usually impossible to design θ̂ to minimize the MSE because the bias depends on θ∗, which is of
course unknown. But suppose we restrict our attention to unbiased estimators; i.e., θ̂ satisfying Eθ̂ = θ∗.
Then

MSE(θ̂) = var(θ̂)

and var(θ̂) does not depend on θ∗.
So a realizable approach is to optimize the MSE with respect to the class of unbiased estimators. The

Minimum Variance UnBiased (MVUB) estimator is defined as

θ̃ = arg min
θ̂ : E[θ̂]=θ∗

E[‖θ̂ − Eθ̂‖22]
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Example 2 X1, X2, ..., Xn
iid∼ N (θ∗, 1)

θ̂ =
1
n

∑
xi ⇒ E[θ̂] = θ∗

MSE(θ̂) = E
[∣∣∣∣ 1n∑xi − Eθ̂

∣∣∣∣2]
= var

(
1
n

∑
xi

)
=

1
n2

∑
var(xi) =

1
n

Is this the MVUB estimator?

2 Finding the MVUB estimator

Finding the MVUB estimator can be difficult, but sometimes it is easy to verify that a particular estimator
is MVUB.

Theorem 1 (Cramér-Rao Lower Bound (CRLB ) )

Let x denote an n-dimensional random vector with density p(x|θ∗), θ∗ ∈ Rk
Assume that the first and second derivatives of log p(x|θ) exist.
Let θ̂ = θ̂(x) be an unbiased estimator of θ∗. Then the error covariance satisfies the matrix inequality

E[(θ̂ − Eθ̂)(θ̂ − Eθ̂)T ] ≥ I−1(θ∗)

where I(θ∗) is the Fisher-Information matrix with i,jth element

Iij(θ∗) = −E
[
∂2 log p(x|θ)
∂θi∂θj

∣∣∣∣
θ=θ∗

]
Remark : The meaning of the inequality

C := E[(θ̂ − Eθ̂)(θ̂ − Eθ̂)T ] ≥ I−1(θ∗)

is that the eigenvalues of the symmetric matrix

C − I−1(θ∗)

are non-negative. As a consequence

var(θ̂) = tr(E[(θ̂ − Eθ̂)(θ̂ − Eθ̂)T ])
= tr(C) ≥ tr(I−1(θ∗))

Proof : We will prove the scalar case (θ ∈ R). The general case follows in a similar fashion. The Fisher-
Information is scalar in this case :

I(θ∗) = −E
[
∂2 log p(x|θ)

∂θ2

∣∣∣∣
θ=θ∗

]
Before proceeding we will show first that

I(θ∗) = E
[(

∂ log p(x|θ)
∂θ

)2∣∣∣∣
θ=θ∗

]
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To this end, first observe that

∂2 log p(x|θ)
∂θ2

=
∂

∂θ

(
∂ log p(x|θ)

∂θ

)
=

∂

∂θ

(
1

p(x|θ)
∂p(x|θ)
∂θ2

)
= − 1

p2(x|θ)
∂p(x|θ)
∂θ

∂p(x|θ)
∂θ

+
1

p(x|θ)
∂2p(x|θ)
∂θ2

= −
(

1
p(x|θ)

∂p(x|θ)
∂θ

)2

+
1

p(x|θ)
∂2p(x|θ)
∂θ2

Consider the expectation of the second term :

E
[

1
p(x|θ)

∂2p(x|θ)
∂θ2

]
=

∫
1

p(x|θ)
∂2p(x|θ)
∂θ2

p(x|θ)dx

=
∫
∂2p(x|θ)
∂θ2

dx

=
∂2

∂θ2

∫
p(x|θ)dx =

∂2

∂θ2
(1)

= 0

Thus,

−E
[
∂2 log p(x|θ)

∂θ2

∣∣∣∣
θ=θ∗

]
= E

[(
1

p(x|θ)
∂p(x|θ)
∂θ

)2∣∣∣∣
θ=θ∗

]
= E

[(
∂ log p(x|θ)

∂θ

)2∣∣∣∣
θ=θ∗

]
The gradient of the log-likelihood is called the score function. Let’s denote it

S(θ, x) :=
∂

∂θ
log p(x|θ)

Observe that the MLE satisfies S(θ̂, x) = 0. Also note that

E[S(θ∗, x)] =
∫

∂

∂θ
log p(x|θ)|θ=θ∗p(x|θ∗)dx =

∫
∂

∂θ
p(x|θ)dx = 0

and therefore the Fisher-Information is the variance of the score function

I(θ∗) = E
[(

∂ log p(x|θ)
∂θ

)2∣∣∣∣
θ=θ∗

]
So we see that the Fisher-Information measures the variability of the score function at θ = θ∗. We will
also show that

E[S(θ∗, x)(θ̂ − θ∗)] = 1

To verify this, note that

E[θ̂ − θ∗] =
∫

(θ̂ − θ∗)p(x|θ∗)dx = 0
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since θ̂ is unbiased. Take the derivative

0 =
∂

∂θ

∫
(θ̂ − θ)p(x|θ)dx

∣∣∣∣
θ=θ∗

=
(
−
∫
p(x|θ)dx+

∫
(θ̂ − θ∗)∂p(x|θ)

∂θ
dx

)∣∣∣∣
θ=θ∗

= −1 +
∫

(θ̂ − θ∗)p(x|θ)∂ log p(x|θ)
∂θ

dx

∣∣∣∣
θ=θ∗

= −1 + E[S(θ∗, x)(θ̂ − θ∗)]

⇒ E[S(θ∗, x)(θ̂ − θ∗)] = 1

Now we apply the Cauchy-Schwarz inequality.

(i.e.,
∫
f(x)g(x)dx ≤

√∫
f2(x)dx

∫
g2(x)dx)

1 = E[S(θ∗, x)(θ̂ − θ∗)]

≤
√

E[S2(θ∗, x)]
√

E[(θ̂ − θ∗)2]

=
√

var(S(θ∗, x))
√

var(θ̂)

⇒ var(θ̂) ≥ 1
var(S(θ∗, x))

= I−1(θ∗)

Example 3 X1, X2, ..., Xn
iid∼ N (θ∗, 1)

log p(x|θ) =
n∑
i=1

log p(xi|θ)

∂

∂θ
log p(x|θ) =

n∑
i=1

∂

∂θ
log p(xi|θ)

=
n∑
i=1

∂

∂θ
log
(

1√
2π

e
−(xi−θ)

2

2

)

=
n∑
i=1

(xi − θ)

I(θ∗) = E
[(

∂ log p(x|θ)
∂θ

)2∣∣∣∣
θ=θ∗

]
=

n∑
i=1

E[(xi − θ∗)2] = n

⇒ MVUB estimator variance ≥ 1
n

But recall the unbiased estimator

θ̂ =
1
n

n∑
i=1

xi

var(θ̂2) =
1
n
⇒ θ̂ is the MVUB estimator!
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3 Efficiency

An unbiased estimator that achieved the CRLB is said to be efficient. Efficient estimators are MVUB, but
not all MVUB estimators are necessarily efficient.

An estimator θ̂n is said to be asymptotically efficient if it achieves the CRLB, as n→∞.

Recall that under mild regularity conditions, the MLE has an asymptotic distribution

θ̂n
asymp∼ N (θ∗,

1
n
I(θ∗))

and so θ̂n is asymptotically unbiased and

var(θ̂n) =
1
n
I−1(θ∗)

so it is asymptotically efficient.


